3.346 \(\int \frac {1}{x (d+e x^2) (a+b x^2+c x^4)^{3/2}} \, dx\)

Optimal. Leaf size=266 \[ -\frac {\tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{2 a^{3/2} d}+\frac {e \left (2 a c e+b^2 (-e)+c x^2 (2 c d-b e)+b c d\right )}{d \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4} \left (a e^2-b d e+c d^2\right )}+\frac {-2 a c+b^2+b c x^2}{a d \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {e^3 \tanh ^{-1}\left (\frac {-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt {a+b x^2+c x^4} \sqrt {a e^2-b d e+c d^2}}\right )}{2 d \left (a e^2-b d e+c d^2\right )^{3/2}} \]

[Out]

-1/2*arctanh(1/2*(b*x^2+2*a)/a^(1/2)/(c*x^4+b*x^2+a)^(1/2))/a^(3/2)/d-1/2*e^3*arctanh(1/2*(b*d-2*a*e+(-b*e+2*c
*d)*x^2)/(a*e^2-b*d*e+c*d^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2))/d/(a*e^2-b*d*e+c*d^2)^(3/2)+(b*c*x^2-2*a*c+b^2)/a/(-
4*a*c+b^2)/d/(c*x^4+b*x^2+a)^(1/2)+e*(b*c*d-b^2*e+2*a*c*e+c*(-b*e+2*c*d)*x^2)/(-4*a*c+b^2)/d/(a*e^2-b*d*e+c*d^
2)/(c*x^4+b*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.39, antiderivative size = 266, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 6, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {1251, 960, 740, 12, 724, 206} \[ -\frac {\tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{2 a^{3/2} d}+\frac {e \left (2 a c e+b^2 (-e)+c x^2 (2 c d-b e)+b c d\right )}{d \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4} \left (a e^2-b d e+c d^2\right )}+\frac {-2 a c+b^2+b c x^2}{a d \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {e^3 \tanh ^{-1}\left (\frac {-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt {a+b x^2+c x^4} \sqrt {a e^2-b d e+c d^2}}\right )}{2 d \left (a e^2-b d e+c d^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*(d + e*x^2)*(a + b*x^2 + c*x^4)^(3/2)),x]

[Out]

(b^2 - 2*a*c + b*c*x^2)/(a*(b^2 - 4*a*c)*d*Sqrt[a + b*x^2 + c*x^4]) + (e*(b*c*d - b^2*e + 2*a*c*e + c*(2*c*d -
 b*e)*x^2))/((b^2 - 4*a*c)*d*(c*d^2 - b*d*e + a*e^2)*Sqrt[a + b*x^2 + c*x^4]) - ArcTanh[(2*a + b*x^2)/(2*Sqrt[
a]*Sqrt[a + b*x^2 + c*x^4])]/(2*a^(3/2)*d) - (e^3*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x^2)/(2*Sqrt[c*d^2 - b*
d*e + a*e^2]*Sqrt[a + b*x^2 + c*x^4])])/(2*d*(c*d^2 - b*d*e + a*e^2)^(3/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 740

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e
+ a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*Simp[b*c*d*e*(2*p - m
+ 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x
, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b
*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 960

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && (IntegerQ[p] || (ILtQ[m, 0] &&
ILtQ[n, 0])) &&  !(IGtQ[m, 0] || IGtQ[n, 0])

Rule 1251

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {1}{x \left (d+e x^2\right ) \left (a+b x^2+c x^4\right )^{3/2}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{x (d+e x) \left (a+b x+c x^2\right )^{3/2}} \, dx,x,x^2\right )\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \left (\frac {1}{d x \left (a+b x+c x^2\right )^{3/2}}-\frac {e}{d (d+e x) \left (a+b x+c x^2\right )^{3/2}}\right ) \, dx,x,x^2\right )\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{x \left (a+b x+c x^2\right )^{3/2}} \, dx,x,x^2\right )}{2 d}-\frac {e \operatorname {Subst}\left (\int \frac {1}{(d+e x) \left (a+b x+c x^2\right )^{3/2}} \, dx,x,x^2\right )}{2 d}\\ &=\frac {b^2-2 a c+b c x^2}{a \left (b^2-4 a c\right ) d \sqrt {a+b x^2+c x^4}}+\frac {e \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x^2\right )}{\left (b^2-4 a c\right ) d \left (c d^2-b d e+a e^2\right ) \sqrt {a+b x^2+c x^4}}-\frac {\operatorname {Subst}\left (\int \frac {-\frac {b^2}{2}+2 a c}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{a \left (b^2-4 a c\right ) d}+\frac {e \operatorname {Subst}\left (\int -\frac {\left (b^2-4 a c\right ) e^2}{2 (d+e x) \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{\left (b^2-4 a c\right ) d \left (c d^2-b d e+a e^2\right )}\\ &=\frac {b^2-2 a c+b c x^2}{a \left (b^2-4 a c\right ) d \sqrt {a+b x^2+c x^4}}+\frac {e \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x^2\right )}{\left (b^2-4 a c\right ) d \left (c d^2-b d e+a e^2\right ) \sqrt {a+b x^2+c x^4}}+\frac {\operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{2 a d}-\frac {e^3 \operatorname {Subst}\left (\int \frac {1}{(d+e x) \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{2 d \left (c d^2-b d e+a e^2\right )}\\ &=\frac {b^2-2 a c+b c x^2}{a \left (b^2-4 a c\right ) d \sqrt {a+b x^2+c x^4}}+\frac {e \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x^2\right )}{\left (b^2-4 a c\right ) d \left (c d^2-b d e+a e^2\right ) \sqrt {a+b x^2+c x^4}}-\frac {\operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x^2}{\sqrt {a+b x^2+c x^4}}\right )}{a d}+\frac {e^3 \operatorname {Subst}\left (\int \frac {1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac {-b d+2 a e-(2 c d-b e) x^2}{\sqrt {a+b x^2+c x^4}}\right )}{d \left (c d^2-b d e+a e^2\right )}\\ &=\frac {b^2-2 a c+b c x^2}{a \left (b^2-4 a c\right ) d \sqrt {a+b x^2+c x^4}}+\frac {e \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x^2\right )}{\left (b^2-4 a c\right ) d \left (c d^2-b d e+a e^2\right ) \sqrt {a+b x^2+c x^4}}-\frac {\tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{2 a^{3/2} d}-\frac {e^3 \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x^2}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x^2+c x^4}}\right )}{2 d \left (c d^2-b d e+a e^2\right )^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.73, size = 236, normalized size = 0.89 \[ -\frac {\frac {\tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{a^{3/2}}+\frac {2 d \left (b c \left (3 a e+c d x^2\right )-2 a c^2 \left (d-e x^2\right )+b^3 (-e)+b^2 c \left (d-e x^2\right )\right )}{a \left (4 a c-b^2\right ) \sqrt {a+b x^2+c x^4} \left (e (a e-b d)+c d^2\right )}+\frac {e^3 \tanh ^{-1}\left (\frac {-2 a e+b \left (d-e x^2\right )+2 c d x^2}{2 \sqrt {a+b x^2+c x^4} \sqrt {e (a e-b d)+c d^2}}\right )}{\left (e (a e-b d)+c d^2\right )^{3/2}}}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(d + e*x^2)*(a + b*x^2 + c*x^4)^(3/2)),x]

[Out]

-1/2*((2*d*(-(b^3*e) + b*c*(3*a*e + c*d*x^2) + b^2*c*(d - e*x^2) - 2*a*c^2*(d - e*x^2)))/(a*(-b^2 + 4*a*c)*(c*
d^2 + e*(-(b*d) + a*e))*Sqrt[a + b*x^2 + c*x^4]) + ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])]/
a^(3/2) + (e^3*ArcTanh[(-2*a*e + 2*c*d*x^2 + b*(d - e*x^2))/(2*Sqrt[c*d^2 + e*(-(b*d) + a*e)]*Sqrt[a + b*x^2 +
 c*x^4])])/(c*d^2 + e*(-(b*d) + a*e))^(3/2))/d

________________________________________________________________________________________

fricas [B]  time = 9.53, size = 4909, normalized size = 18.45 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x^2+d)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

[1/4*(((a^2*b^2*c - 4*a^3*c^2)*e^3*x^4 + (a^2*b^3 - 4*a^3*b*c)*e^3*x^2 + (a^3*b^2 - 4*a^4*c)*e^3)*sqrt(c*d^2 -
 b*d*e + a*e^2)*log(-((8*c^2*d^2 - 8*b*c*d*e + (b^2 + 4*a*c)*e^2)*x^4 - 8*a*b*d*e + 8*a^2*e^2 + (b^2 + 4*a*c)*
d^2 + 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*e)*x^2 - 4*sqrt(c*x^4 + b*x^2 + a)*sqrt(c*d^2 - b*d*e + a*e
^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e))/(e^2*x^4 + 2*d*e*x^2 + d^2)) + ((a*b^2*c^2 - 4*a^2*c^3)*d^4 - 2*(a*b^3*
c - 4*a^2*b*c^2)*d^3*e + (a*b^4 - 2*a^2*b^2*c - 8*a^3*c^2)*d^2*e^2 - 2*(a^2*b^3 - 4*a^3*b*c)*d*e^3 + (a^3*b^2
- 4*a^4*c)*e^4 + ((b^2*c^3 - 4*a*c^4)*d^4 - 2*(b^3*c^2 - 4*a*b*c^3)*d^3*e + (b^4*c - 2*a*b^2*c^2 - 8*a^2*c^3)*
d^2*e^2 - 2*(a*b^3*c - 4*a^2*b*c^2)*d*e^3 + (a^2*b^2*c - 4*a^3*c^2)*e^4)*x^4 + ((b^3*c^2 - 4*a*b*c^3)*d^4 - 2*
(b^4*c - 4*a*b^2*c^2)*d^3*e + (b^5 - 2*a*b^3*c - 8*a^2*b*c^2)*d^2*e^2 - 2*(a*b^4 - 4*a^2*b^2*c)*d*e^3 + (a^2*b
^3 - 4*a^3*b*c)*e^4)*x^2)*sqrt(a)*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a
)*sqrt(a) + 8*a^2)/x^4) + 4*((a*b^2*c^2 - 2*a^2*c^3)*d^4 - (2*a*b^3*c - 5*a^2*b*c^2)*d^3*e + (a*b^4 - 2*a^2*b^
2*c - 2*a^3*c^2)*d^2*e^2 - (a^2*b^3 - 3*a^3*b*c)*d*e^3 + (a*b*c^3*d^4 - 2*(a*b^2*c^2 - a^2*c^3)*d^3*e + (a*b^3
*c - a^2*b*c^2)*d^2*e^2 - (a^2*b^2*c - 2*a^3*c^2)*d*e^3)*x^2)*sqrt(c*x^4 + b*x^2 + a))/((a^3*b^2*c^2 - 4*a^4*c
^3)*d^5 - 2*(a^3*b^3*c - 4*a^4*b*c^2)*d^4*e + (a^3*b^4 - 2*a^4*b^2*c - 8*a^5*c^2)*d^3*e^2 - 2*(a^4*b^3 - 4*a^5
*b*c)*d^2*e^3 + (a^5*b^2 - 4*a^6*c)*d*e^4 + ((a^2*b^2*c^3 - 4*a^3*c^4)*d^5 - 2*(a^2*b^3*c^2 - 4*a^3*b*c^3)*d^4
*e + (a^2*b^4*c - 2*a^3*b^2*c^2 - 8*a^4*c^3)*d^3*e^2 - 2*(a^3*b^3*c - 4*a^4*b*c^2)*d^2*e^3 + (a^4*b^2*c - 4*a^
5*c^2)*d*e^4)*x^4 + ((a^2*b^3*c^2 - 4*a^3*b*c^3)*d^5 - 2*(a^2*b^4*c - 4*a^3*b^2*c^2)*d^4*e + (a^2*b^5 - 2*a^3*
b^3*c - 8*a^4*b*c^2)*d^3*e^2 - 2*(a^3*b^4 - 4*a^4*b^2*c)*d^2*e^3 + (a^4*b^3 - 4*a^5*b*c)*d*e^4)*x^2), -1/4*(2*
((a^2*b^2*c - 4*a^3*c^2)*e^3*x^4 + (a^2*b^3 - 4*a^3*b*c)*e^3*x^2 + (a^3*b^2 - 4*a^4*c)*e^3)*sqrt(-c*d^2 + b*d*
e - a*e^2)*arctan(-1/2*sqrt(c*x^4 + b*x^2 + a)*sqrt(-c*d^2 + b*d*e - a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e)/
((c^2*d^2 - b*c*d*e + a*c*e^2)*x^4 + a*c*d^2 - a*b*d*e + a^2*e^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x^2)) - ((a*b
^2*c^2 - 4*a^2*c^3)*d^4 - 2*(a*b^3*c - 4*a^2*b*c^2)*d^3*e + (a*b^4 - 2*a^2*b^2*c - 8*a^3*c^2)*d^2*e^2 - 2*(a^2
*b^3 - 4*a^3*b*c)*d*e^3 + (a^3*b^2 - 4*a^4*c)*e^4 + ((b^2*c^3 - 4*a*c^4)*d^4 - 2*(b^3*c^2 - 4*a*b*c^3)*d^3*e +
 (b^4*c - 2*a*b^2*c^2 - 8*a^2*c^3)*d^2*e^2 - 2*(a*b^3*c - 4*a^2*b*c^2)*d*e^3 + (a^2*b^2*c - 4*a^3*c^2)*e^4)*x^
4 + ((b^3*c^2 - 4*a*b*c^3)*d^4 - 2*(b^4*c - 4*a*b^2*c^2)*d^3*e + (b^5 - 2*a*b^3*c - 8*a^2*b*c^2)*d^2*e^2 - 2*(
a*b^4 - 4*a^2*b^2*c)*d*e^3 + (a^2*b^3 - 4*a^3*b*c)*e^4)*x^2)*sqrt(a)*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 - 4*s
qrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(a) + 8*a^2)/x^4) - 4*((a*b^2*c^2 - 2*a^2*c^3)*d^4 - (2*a*b^3*c - 5*a
^2*b*c^2)*d^3*e + (a*b^4 - 2*a^2*b^2*c - 2*a^3*c^2)*d^2*e^2 - (a^2*b^3 - 3*a^3*b*c)*d*e^3 + (a*b*c^3*d^4 - 2*(
a*b^2*c^2 - a^2*c^3)*d^3*e + (a*b^3*c - a^2*b*c^2)*d^2*e^2 - (a^2*b^2*c - 2*a^3*c^2)*d*e^3)*x^2)*sqrt(c*x^4 +
b*x^2 + a))/((a^3*b^2*c^2 - 4*a^4*c^3)*d^5 - 2*(a^3*b^3*c - 4*a^4*b*c^2)*d^4*e + (a^3*b^4 - 2*a^4*b^2*c - 8*a^
5*c^2)*d^3*e^2 - 2*(a^4*b^3 - 4*a^5*b*c)*d^2*e^3 + (a^5*b^2 - 4*a^6*c)*d*e^4 + ((a^2*b^2*c^3 - 4*a^3*c^4)*d^5
- 2*(a^2*b^3*c^2 - 4*a^3*b*c^3)*d^4*e + (a^2*b^4*c - 2*a^3*b^2*c^2 - 8*a^4*c^3)*d^3*e^2 - 2*(a^3*b^3*c - 4*a^4
*b*c^2)*d^2*e^3 + (a^4*b^2*c - 4*a^5*c^2)*d*e^4)*x^4 + ((a^2*b^3*c^2 - 4*a^3*b*c^3)*d^5 - 2*(a^2*b^4*c - 4*a^3
*b^2*c^2)*d^4*e + (a^2*b^5 - 2*a^3*b^3*c - 8*a^4*b*c^2)*d^3*e^2 - 2*(a^3*b^4 - 4*a^4*b^2*c)*d^2*e^3 + (a^4*b^3
 - 4*a^5*b*c)*d*e^4)*x^2), 1/4*(2*((a*b^2*c^2 - 4*a^2*c^3)*d^4 - 2*(a*b^3*c - 4*a^2*b*c^2)*d^3*e + (a*b^4 - 2*
a^2*b^2*c - 8*a^3*c^2)*d^2*e^2 - 2*(a^2*b^3 - 4*a^3*b*c)*d*e^3 + (a^3*b^2 - 4*a^4*c)*e^4 + ((b^2*c^3 - 4*a*c^4
)*d^4 - 2*(b^3*c^2 - 4*a*b*c^3)*d^3*e + (b^4*c - 2*a*b^2*c^2 - 8*a^2*c^3)*d^2*e^2 - 2*(a*b^3*c - 4*a^2*b*c^2)*
d*e^3 + (a^2*b^2*c - 4*a^3*c^2)*e^4)*x^4 + ((b^3*c^2 - 4*a*b*c^3)*d^4 - 2*(b^4*c - 4*a*b^2*c^2)*d^3*e + (b^5 -
 2*a*b^3*c - 8*a^2*b*c^2)*d^2*e^2 - 2*(a*b^4 - 4*a^2*b^2*c)*d*e^3 + (a^2*b^3 - 4*a^3*b*c)*e^4)*x^2)*sqrt(-a)*a
rctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(-a)/(a*c*x^4 + a*b*x^2 + a^2)) + ((a^2*b^2*c - 4*a^3*c^2)
*e^3*x^4 + (a^2*b^3 - 4*a^3*b*c)*e^3*x^2 + (a^3*b^2 - 4*a^4*c)*e^3)*sqrt(c*d^2 - b*d*e + a*e^2)*log(-((8*c^2*d
^2 - 8*b*c*d*e + (b^2 + 4*a*c)*e^2)*x^4 - 8*a*b*d*e + 8*a^2*e^2 + (b^2 + 4*a*c)*d^2 + 2*(4*b*c*d^2 + 4*a*b*e^2
 - (3*b^2 + 4*a*c)*d*e)*x^2 - 4*sqrt(c*x^4 + b*x^2 + a)*sqrt(c*d^2 - b*d*e + a*e^2)*((2*c*d - b*e)*x^2 + b*d -
 2*a*e))/(e^2*x^4 + 2*d*e*x^2 + d^2)) + 4*((a*b^2*c^2 - 2*a^2*c^3)*d^4 - (2*a*b^3*c - 5*a^2*b*c^2)*d^3*e + (a*
b^4 - 2*a^2*b^2*c - 2*a^3*c^2)*d^2*e^2 - (a^2*b^3 - 3*a^3*b*c)*d*e^3 + (a*b*c^3*d^4 - 2*(a*b^2*c^2 - a^2*c^3)*
d^3*e + (a*b^3*c - a^2*b*c^2)*d^2*e^2 - (a^2*b^2*c - 2*a^3*c^2)*d*e^3)*x^2)*sqrt(c*x^4 + b*x^2 + a))/((a^3*b^2
*c^2 - 4*a^4*c^3)*d^5 - 2*(a^3*b^3*c - 4*a^4*b*c^2)*d^4*e + (a^3*b^4 - 2*a^4*b^2*c - 8*a^5*c^2)*d^3*e^2 - 2*(a
^4*b^3 - 4*a^5*b*c)*d^2*e^3 + (a^5*b^2 - 4*a^6*c)*d*e^4 + ((a^2*b^2*c^3 - 4*a^3*c^4)*d^5 - 2*(a^2*b^3*c^2 - 4*
a^3*b*c^3)*d^4*e + (a^2*b^4*c - 2*a^3*b^2*c^2 - 8*a^4*c^3)*d^3*e^2 - 2*(a^3*b^3*c - 4*a^4*b*c^2)*d^2*e^3 + (a^
4*b^2*c - 4*a^5*c^2)*d*e^4)*x^4 + ((a^2*b^3*c^2 - 4*a^3*b*c^3)*d^5 - 2*(a^2*b^4*c - 4*a^3*b^2*c^2)*d^4*e + (a^
2*b^5 - 2*a^3*b^3*c - 8*a^4*b*c^2)*d^3*e^2 - 2*(a^3*b^4 - 4*a^4*b^2*c)*d^2*e^3 + (a^4*b^3 - 4*a^5*b*c)*d*e^4)*
x^2), -1/2*(((a^2*b^2*c - 4*a^3*c^2)*e^3*x^4 + (a^2*b^3 - 4*a^3*b*c)*e^3*x^2 + (a^3*b^2 - 4*a^4*c)*e^3)*sqrt(-
c*d^2 + b*d*e - a*e^2)*arctan(-1/2*sqrt(c*x^4 + b*x^2 + a)*sqrt(-c*d^2 + b*d*e - a*e^2)*((2*c*d - b*e)*x^2 + b
*d - 2*a*e)/((c^2*d^2 - b*c*d*e + a*c*e^2)*x^4 + a*c*d^2 - a*b*d*e + a^2*e^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x
^2)) - ((a*b^2*c^2 - 4*a^2*c^3)*d^4 - 2*(a*b^3*c - 4*a^2*b*c^2)*d^3*e + (a*b^4 - 2*a^2*b^2*c - 8*a^3*c^2)*d^2*
e^2 - 2*(a^2*b^3 - 4*a^3*b*c)*d*e^3 + (a^3*b^2 - 4*a^4*c)*e^4 + ((b^2*c^3 - 4*a*c^4)*d^4 - 2*(b^3*c^2 - 4*a*b*
c^3)*d^3*e + (b^4*c - 2*a*b^2*c^2 - 8*a^2*c^3)*d^2*e^2 - 2*(a*b^3*c - 4*a^2*b*c^2)*d*e^3 + (a^2*b^2*c - 4*a^3*
c^2)*e^4)*x^4 + ((b^3*c^2 - 4*a*b*c^3)*d^4 - 2*(b^4*c - 4*a*b^2*c^2)*d^3*e + (b^5 - 2*a*b^3*c - 8*a^2*b*c^2)*d
^2*e^2 - 2*(a*b^4 - 4*a^2*b^2*c)*d*e^3 + (a^2*b^3 - 4*a^3*b*c)*e^4)*x^2)*sqrt(-a)*arctan(1/2*sqrt(c*x^4 + b*x^
2 + a)*(b*x^2 + 2*a)*sqrt(-a)/(a*c*x^4 + a*b*x^2 + a^2)) - 2*((a*b^2*c^2 - 2*a^2*c^3)*d^4 - (2*a*b^3*c - 5*a^2
*b*c^2)*d^3*e + (a*b^4 - 2*a^2*b^2*c - 2*a^3*c^2)*d^2*e^2 - (a^2*b^3 - 3*a^3*b*c)*d*e^3 + (a*b*c^3*d^4 - 2*(a*
b^2*c^2 - a^2*c^3)*d^3*e + (a*b^3*c - a^2*b*c^2)*d^2*e^2 - (a^2*b^2*c - 2*a^3*c^2)*d*e^3)*x^2)*sqrt(c*x^4 + b*
x^2 + a))/((a^3*b^2*c^2 - 4*a^4*c^3)*d^5 - 2*(a^3*b^3*c - 4*a^4*b*c^2)*d^4*e + (a^3*b^4 - 2*a^4*b^2*c - 8*a^5*
c^2)*d^3*e^2 - 2*(a^4*b^3 - 4*a^5*b*c)*d^2*e^3 + (a^5*b^2 - 4*a^6*c)*d*e^4 + ((a^2*b^2*c^3 - 4*a^3*c^4)*d^5 -
2*(a^2*b^3*c^2 - 4*a^3*b*c^3)*d^4*e + (a^2*b^4*c - 2*a^3*b^2*c^2 - 8*a^4*c^3)*d^3*e^2 - 2*(a^3*b^3*c - 4*a^4*b
*c^2)*d^2*e^3 + (a^4*b^2*c - 4*a^5*c^2)*d*e^4)*x^4 + ((a^2*b^3*c^2 - 4*a^3*b*c^3)*d^5 - 2*(a^2*b^4*c - 4*a^3*b
^2*c^2)*d^4*e + (a^2*b^5 - 2*a^3*b^3*c - 8*a^4*b*c^2)*d^3*e^2 - 2*(a^3*b^4 - 4*a^4*b^2*c)*d^2*e^3 + (a^4*b^3 -
 4*a^5*b*c)*d*e^4)*x^2)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x^2+d)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Erro
r: Bad Argument Type

________________________________________________________________________________________

maple [B]  time = 0.02, size = 612, normalized size = 2.30 \[ -\frac {2 c \,e^{2} \ln \left (\frac {\frac {\left (b e -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+\frac {2 a \,e^{2}-2 d e b +2 c \,d^{2}}{e^{2}}+2 \sqrt {\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}\, \sqrt {\left (x^{2}+\frac {d}{e}\right )^{2} c +\frac {\left (b e -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}}{x^{2}+\frac {d}{e}}\right )}{\left (-b e +2 c d +\sqrt {-4 a c +b^{2}}\, e \right ) \left (b e -2 c d +\sqrt {-4 a c +b^{2}}\, e \right ) \sqrt {\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}\, d}-\frac {b c \,x^{2}}{\left (4 a c -b^{2}\right ) \sqrt {c \,x^{4}+b \,x^{2}+a}\, a d}-\frac {2 \sqrt {\left (x^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )^{2} c -\sqrt {-4 a c +b^{2}}\, \left (x^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}\, c e}{\left (b e -2 c d +\sqrt {-4 a c +b^{2}}\, e \right ) \left (-4 a c +b^{2}\right ) \left (x^{2}+\frac {b}{2 c}+\frac {\sqrt {-4 a c +b^{2}}}{2 c}\right ) d}+\frac {2 \sqrt {\left (x^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )^{2} c +\sqrt {-4 a c +b^{2}}\, \left (x^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}\, c e}{\left (-b e +2 c d +\sqrt {-4 a c +b^{2}}\, e \right ) \left (-4 a c +b^{2}\right ) \left (x^{2}+\frac {b}{2 c}-\frac {\sqrt {-4 a c +b^{2}}}{2 c}\right ) d}-\frac {b^{2}}{2 \left (4 a c -b^{2}\right ) \sqrt {c \,x^{4}+b \,x^{2}+a}\, a d}-\frac {\ln \left (\frac {b \,x^{2}+2 a +2 \sqrt {c \,x^{4}+b \,x^{2}+a}\, \sqrt {a}}{x^{2}}\right )}{2 a^{\frac {3}{2}} d}+\frac {1}{2 \sqrt {c \,x^{4}+b \,x^{2}+a}\, a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(e*x^2+d)/(c*x^4+b*x^2+a)^(3/2),x)

[Out]

1/2/d/a/(c*x^4+b*x^2+a)^(1/2)-1/d*b/a/(4*a*c-b^2)/(c*x^4+b*x^2+a)^(1/2)*c*x^2-1/2/d*b^2/a/(4*a*c-b^2)/(c*x^4+b
*x^2+a)^(1/2)-1/2/d/a^(3/2)*ln((b*x^2+2*a+2*(c*x^4+b*x^2+a)^(1/2)*a^(1/2))/x^2)-2*e/d*c/(b*e-2*c*d+(-4*a*c+b^2
)^(1/2)*e)/(-4*a*c+b^2)/(x^2+1/2*b/c+1/2*(-4*a*c+b^2)^(1/2)/c)*((x^2+1/2*(b+(-4*a*c+b^2)^(1/2))/c)^2*c-(-4*a*c
+b^2)^(1/2)*(x^2+1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2)-2*e^2/d*c/(-b*e+2*c*d+(-4*a*c+b^2)^(1/2)*e)/(b*e-2*c*d+(
-4*a*c+b^2)^(1/2)*e)/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln(((b*e-2*c*d)*(x^2+d/e)/e+2*(a*e^2-b*d*e+c*d^2)/e^2+2*(
(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x^2+d/e)^2*c+(b*e-2*c*d)*(x^2+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e
))+2*e/d*c/(-b*e+2*c*d+(-4*a*c+b^2)^(1/2)*e)/(-4*a*c+b^2)/(x^2+1/2*b/c-1/2*(-4*a*c+b^2)^(1/2)/c)*((x^2-1/2*(-b
+(-4*a*c+b^2)^(1/2))/c)^2*c+(-4*a*c+b^2)^(1/2)*(x^2-1/2*(-b+(-4*a*c+b^2)^(1/2))/c))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (c x^{4} + b x^{2} + a\right )}^{\frac {3}{2}} {\left (e x^{2} + d\right )} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x^2+d)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((c*x^4 + b*x^2 + a)^(3/2)*(e*x^2 + d)*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{x\,\left (e\,x^2+d\right )\,{\left (c\,x^4+b\,x^2+a\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(d + e*x^2)*(a + b*x^2 + c*x^4)^(3/2)),x)

[Out]

int(1/(x*(d + e*x^2)*(a + b*x^2 + c*x^4)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x \left (d + e x^{2}\right ) \left (a + b x^{2} + c x^{4}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x**2+d)/(c*x**4+b*x**2+a)**(3/2),x)

[Out]

Integral(1/(x*(d + e*x**2)*(a + b*x**2 + c*x**4)**(3/2)), x)

________________________________________________________________________________________